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1. Statement of the problem 
The Lagally theorem for unsteady flow expresses the forces and moments acting 

on a rigid body moving in an inviscid and incompressible fluid in terms of the singu- 
larities of the analytically continued flow within the body. Previous generalizations 
of the Lagally theorem, originally given by Lagally (1 922) for steady flows, are due to 
Cummins (1957) and Landweber & Yih (1956), who consider the effect of flow un- 
steadiness on the forces and moments. In  these, the system of image singularities 
within the body was assumed to consist of isolated or continuous (surface or volume) 
distributions of sources and doublets. A further extension of Lagally’s theorem ie due 
to Landweber (1967)) who derived expressions for the steady forces and moments 
acting on a rigid body generated by isolated or a continuous distribution of multipoles. 
The purpose of the present paper is to generalize the Lagally theorem so as to include 
the effects of multipoles in unsteady flow, and deformability of the body, as well as 
to present a briefer derivation of the resulting formulae. Two examples, illustrating 
the application of the force and moment formulae, will be presented. 

We shall employ a rectangular Cartesian co-ordinate system xi (i = 1, 2, 3), or 
alternatively x, y, z, attached to the body, and denote the position vector of the point 
(xl, x2, x3) by r. The components of the velocity vector V of the origin of co-ordinates 
will be denoted by (V,, V,, V3) and the components of the angular velocity of the body 
o by (wl, w,, w3) .  The surface of the deformable body will be denoted b y 9  and the 
volume by V ,  where both Y and V are, in general, time-dependent. The instantaneous 
direction of the outward normal to  Y will be indicated by the unit normal vector n, 
with components ni = axi/an. Here n denotes distance measured from Y along the 
normal, positive outward. 

We shall assume that the fluid is inviscid and incompressible, the flow irrotational, 
and express the velocity potential as 

where v denotes the velocity a t  a point of the fluid, the unit potentials #$ and q5i+3 
represent flows induced by the motion of the undeformed body when all boundaries 
and external flow-producing mechanisms are at rest, #,, is due to the presence and 
motion of the latter when the undeformed body is at rest, and #a is the additional 
potential which is associated with the deformation of the body. The kinematic 
boundary condition a t  a point of Y can then be expressed in the alternative forms 

v . n  = (V+OX r+Va).n (2) 
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or 

where V, is the velocity of the deforming surface relative to the co-ordinate system 
xi which is attached to the body, If we denote the equation of the body surface by 
f(r,t) = 0, where t denotes time, we may derive the following expression for the 
deformation velocity V,: 

- 1 af 
l V f l  at' 

n.V,  = -- (4) 

Relative to the moving co-ordinate system, the Bernoulli equation yields the 
pressurep in the form (Lamb 1932, p. 20) 

2 - - --- a@ + v . v + v . v + v . o x  r,  
p at! 

where p is the mass density of the fluid. The time variable relative to the moving 
co-ordinate system t' is related to the ' absolute ' time variable t relative to a $xed 
co-ordinate system so that, for any differentiable vector Q(r, t ) ,  

dQ = 
dt dt' 

The force F and moment M acting on the body will be determined from the basic 
formulae 

n n 

F = - J  p n d z  M = -  
Y 

(7) 

where the pressure is given by (5). We shall show that both F and M are expressible 
in terms of the system of singularities within the body associated with the external 
flow and the motion of the body surface. The internal flow will also be assumed to be 
irrotational and the internal singularities will at f ist  be assumed to be isolated 
multipoles of order q = a +/3 + y and strength Pkq, situated at a point rs, with potential 

where E = d ,  0, 1, 2, 3, 4, 5, 6 indicates that the singularity is associated with q5d, 
$,,, $i, or q5i+3 (i = 1,2,3)  respectively. These include the source and doublet potentials 
as those of multipoles of order 0 and 1, respectively. In  the neighbourhood of a multi- 
pole we shall require the definitions 

$k = # ; + d k q ,  vk = v;+vkq, (9) 

where both q5; and v; are regular at the location of the multipole. 
' We shall derive the following expressions for the Lagally force 

- F  = - VClG/'-4n (10) P dt R 
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and for the Lagally moment about the origin 

3+j,3+i+4n E[P3+j,,g @‘(v.r-#& 
P 8 

Here V, is the velocity of the centroid of the volume T of the body and r, its position 
vector, V, denotes the velocity of a point of the deformable surface Y where V, = 0 
corresponds to the case of a rigid surface; indicates that the summation extends 

over all singularities and ( )8 that the quantity in parentheses is evaluated a t  the 
point (q, y8, z8). The multipole strength is denoted by P,, with the index k omitted when 
it is associated with the total velocity v; subscriptj in (1  1) denotes the j t h  component 
of a vector; 

8 

A ,  = - q5i(a$,/an)dY = Aji ss. 
are the instantaneous added-mass coefficients of the body; q, q‘ indicate that, in 
general, multipoles of various orders are present. 

2. Some transformations 
Two basic transformations occur repeatedly in the derivation of the generalized 

LagalIy theorem. These involve a pair of vectors u and v, both regular and solenoidal, 
and v also irrotational within V ,  except at a finite number of points at which multi- 
poles are present. Then we have the first transformation 

j9(v.un-vu.n)dY = (Vu).vdT-- 8n 2 Pup@(v‘),, 
3 8  

where Puq is the strength of a multipole of order q associated with U. 
To prove (12) we apply the Gauss transformation to the volume V‘, bounded 

externally by Y and internally by surfaces Yo bounding small regions about the 
singularities of v and u, taking the positive sense of n on 9, into the region V .  Then 
we have 

19(v.un-vu.n)dY= 2 8 Lo (vxn)xud%+ sp, (Vu).vdV’ (13) 

since v .un- vu . n  = (v x n) x u and bothV x vandV .uvanishin V‘.  Now put 

(vx n) x u  = [(v’+v,,) x n] x (u‘+u,) = (v’x n) x u’+(v’x n) x u,+(v,,x n) xu. 

Since both u’ and v’ are regular in the region bounded by Yo, we have 
(14) 

lilioIy0 (v’ x n) x u’ d% = 0. 

The second term in the right-hand side of (14) yields 
a a 

J (v’ x n) x uqd% = EqQJ (v‘ x n) x (R/R3)d%, 
9 0  9 0  

2-2 
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where R is the position vector of a point on Yo relative to (x,, y,, 2,) and 
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U, = Puq D$( R/R3).  

At this stage we may select Yo to  be a sphere of radius R,, and volume Yo about the 
singularity (x8, y8, 2,) as centre. Here R/Ro = n and we obtain 

(v‘ . nn - v’) dYo. ‘s Syo(v’xn)x-d%=- R 
a: R,2 9 0  

Since V . v’ = 0 in Yo, we also have 

(18) 
477 
3 

v’dVo+ - (v’),. Rg y$v‘ .nndYo = vt .VRdV0 = - ‘s 
Hence, as Ro+ 0, (17) becomes 

8n j v‘dV 2 j- v‘d%-+ ($77- 477) (v’), = - - (v‘), J90(v’xn)x-d%= R: R: - v - 0  O R,2 9 0  3 
R 

and 
8n 
3 

( v ~  x n) x u, = - - pW q(v’),. 

Finally, the integral of the last term in (14) vanishes because 

The transformation (12) is then obtained from the results given in (13), (14), (15), 
(19) and (20) when the right-hand side of (1 9) is summed over all singularities of u within 
the volume V ,  and we take the limit as Ro+ 0. 

We shall require three special cases of (12). When u = v, we have from (12) 

(21) 
,ff(v.vn-vv.n)dS = 8n 

Vv.vdV-- I;PqDf(v’),, 
3 8  

where, from now on, we write Pq for Pvq. In  addition, we may write 

l y v .  vn d Y  = v . vndY + 2 j v  VV . v d v ’  -+ 2JYvv. vdV 
8 1% 

since, by (18), 

Hence, eliminating the volume integral between (21) and (22), we obtain the fist 
special transformation 
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Secondly, when u = V, a constant vector, the volume integral in (12) vanishes and, 
since for the present case Pm = 0, we obtain from (12) 

19(v .Vn-vV.n)dy  = 0. (25) 

Thirdly, we set u = o x r and express v as v = VQ, with 0 = 0‘ + a,, and a‘ 
regular within Yo. Then we have Puq = 0, 

and therefore, since also V ( o  x r) . v = -o x v, 

Hence ( 12) becomes 

The second transformation is the following: 

l9 r x [v .un -vu . n ] d Y  = 
8n [r x Vu . v + v  x u]dV-- C Pw@(r x v‘)~, (29) 

which may be proved by applying the Gauss transformation to the volume V‘, the 
hypothesis V x v = V . v = V . u = 0, the identities 

SY 3 a  

v x V . r  = 0, v x V r .  u = v x u ,  
and, by (19), 

Again, we may derive some special forms of the transformation (29). When u = v, 
we have 

(32) 
{9rx[v .vn-w.n]dY= rx(Vv).vdV--€&Dz(rxv’)8, 8v 

3 
but 

Hence, eliminating the volume integral between (32) and (33), we obtain 
b 
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Secondly, when u = V, a constant vector, (29) yields 
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r x [ v . V n - v V . n ] d Y =  - V x  19 
since, by (9) and (26), 

+- - v x I9 @ndY. (37) 

Thirdly, letting u =w x r, we obtain from (29) 

which is derived by applying (30) , the vector identity 

and the relation 
r x (v x u) + v x (u x r) + u x (r x v) = 0, (39) 

Of the above transformations, the three special forms (24), (25) and (28) will be used 
in the derivation of the force expression. Similarly, (35), (36), and ,(38) will be used 
for the moment. 

3. Derivation of expression for the Lagally force 
The hydrodynamic force acting on the body is given by (5 )  and (7) as 

Let us denote the first and second integrals in the right-hand side of (41) by F, and 
F,, respectively. For a deformable surface, we may write 

and by applying Green's reciprocal theorem and the relation (6) between absolute 
and relative time derivatives, we can rewrite the above equation as 

For the first integral in the right-hand side of (43) we obtain, using (2), 
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Furthermore, by applying the Gauss transformation, we obtain 

where V, is the velocity of the volume centroid. 
For the second integral in the right-hand side of (43), we write 

@n - r - dYo  = - r(v’ + vg) . n dYo -+ - 4nPq Ds( r), Lo( 3 Lo (45) 

because of (26). We also note that D;(r), vanishes for q 2 2. Substituting (44) and (45) 
into (43), we now obtain 

Next applying the transformations (24), (25) and (28), together with the boundary 
condition (2), we obtain the following for F,: 

We also note that, by the Reynolds transport theorem, 

(48) 
~ 9 r V , . n d Y = - - ( r c V ) .  d 

dt 

Hence the final expression for F, obtained from (47) and (48), ie 

as was stated in (10). For the case of a rigid surface, V, . n = 0, and for multipoles of 
order 0 and 1 (q < I) ,  (49) reduces to the corresponding expression given in Landweber 
& Yih (1956). The above expression is useful when the normal velocity V, . n of the 
deformable surface is prescribed. For the case where the deformation velocity is 
associated with a potential a d ,  an alternative form of (49), obtained by modifying 
(42). is 

(a) 
where the symbol ): denotes summation over all singularities except those associated 

with the deformation potential #d. 

In  applying the formula for the force, (49) or (50), the contributions to (v‘), from 
singularities at other points within the volume V may be neglected since, as is shown 
in the other referenced treatments of the Lagally theorem, such terms cancel when 
summed over all the internal singularities. 

8 
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4. Derivation of expression for the Lagally moment 
The hydrodynamical moment is given by ( 5 )  and (7) as 

M = pJY $ r x n d Y + p  [&v . v -  v .  V - v  . w  x r] (r  x n ) d Y .  
JY 

(51) 

We denote the first integral on the right-hand side of (51) by MI and, using (6), we 
express it as 

1 a@ - M, = JYa r x n d Y  = @r x n d Y - w  x 
P 

+J vxrV, .ndY.  (52) 

Furthermore, by (1)  and Green’s reciprocal formula, applied to the region exterior 
to Y for gi, #3+i and #,, and to the interior region for #o, we obtain 

Y 

= 2 $y @ z + u i %  +- ’”) # 3 + j d Y +  C/  (#ox- d K .  (53) 
i= 1 an an 8 Yo 

Put #o = $; + #on and #3+j = #A+j + #3+j,q, in the last integral. Then we have, by the 
recimocal formula. * 

#3+j,qp’ 2) d% = 0. 

We also have 

and 

+(rcx  V)jv-47r P3+j,9.@‘(V.r)8. (54) 
8 

Then, introducing the added-mass coefficients in (53), we obtain 

@(r ~ n ) ~ d Y  = (rcx V ) j V - ~ i A 3 + i , 3 + j - 4 ~ C  [P3+j,q,D$(V.r-#,3, 19 8 

+ P ~ D ~ ( ~ A + ~ ) ~ I  +JY43+jvd*nd9. (55)  

Next, applying the transformations (35), (36) and (38) to the second term on the right- 
hand side of (52) gives, after making use of the boundary condition (2), 

1 p M, = J9 [iv. v -  v .  V - v .  w x rJ (r x n ) d Y  = V x 



Unsteady Lagally theorem for multipoles 

However, as shown in (44) and (45), 

J y @ n d Y  = V,V-4;rrCPqD,Q(r),+ 
8 
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(57) 

Hence, from (52) to (57), and (48), 

An alternative expression for the moment, when the deformation velocity is 
associated.with a potential is 

where eiik is the permutation tensor and Aai and Ad,jf3 are added massea associated 
with the interference between the translatory and the rotational motion of the body 
and the motion induced by its deformation, i.e. 

For the case of a rigid body where the highest degree of the multipoles is 1, i.e. 
q = 0,1 ,  the singularity distribution consists of sources and doublets and the 
expression for the moment given in (58) reduces to the equivalent expression given in 
Landweber & Yih (1956). For a rigid body in steady flow represented by multipoles 
of arbitrary order, (10) and (1 1) are identical with the corresponding equations given 
in Landweber (1967). For the case of a deformable surface moving in an unbounded 
fluid, the generalized Lagally expressions reduce to the form given in Averbukh 
(1973) in terms of added-mass coefficients. Equations (10) and (11) are more general 
in the sense that they apply to a general unsteady motion of deformable or permeable 
bodies which are represented by multipoles of arbitrary order. 

So far the analysis has been carried out for a discrete distribution of multipoles. 
When continuous distributions of multipoles exist within the volume V ,  the expres- 
sions (10) and (1 1) for F and M need to be modified only by replacing the sums over the 
multipole terms by integrals over their distributions. This will be illustrated in the 
examples that follow. 
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5. Manoeuvring of a deformable ellipsoid 
In  this section we consider the forces and moments acting on a deformable tri-axial 

ellipsoid moving unsteadily in an otherwise undisturbed medium, in a motion having 
six degrees of freedom. The instantaneous equation of the ellipsoidal surface is 

.;/a: + xg/ag + .:/a: = 1, (61) 

where the time-dependent major axes are arranged such that a, > a2 > a,. It is 
assumed that, during its course of deformation, the ellipsoid ramains similar to itself, 
that is to say 

(62) 

The general motion of the ellipsoid consists of a translatory velocity vector V(V,, V,, V,) 
and angular velocity o(wl, w2, 0,) about the major axes of the ellipsoid. The six 
velocity components are assumed to be time dependent. 

I n  solving potential flow problems involving ellipsoidal boundaries, it is convenient 
to employ orthogonal ellipsoidal co-ordinates (7, y, v) in the manner defined by Hobson 
(1955, p. 454). A normal solution of the Laplace equation in ellipsoidal co-ordinates 
(ellipsoidal harmonic) which vanishes at infinity may be written as Fj(7) &i(y) bf (v ) ,  
where 8; and Sj are the Lam6 functions of the f i s t  and second kind respectively. 
Also i a n d j  are integers such that i Q 2 j  + 1. 

The three Kirchhoff potentials associated with the translatory motion of the 
ellipsoid are given by Miloh (1973) as 

Similarly, the three Kirchhoff potentials associated with the rotational motion of the 
ellipsoid are given by Miloh (1973) as 

The potential function associated with the deformation of the ellipsoid may be 
expressed as 

(67) 

where B is a coefficient to be determined from condition (62). The normal velocity on 
the surface of the ellipsoid induced by the deformation potential #d is 

#&I, P, v) = - BFO(7) 8 0 0 1 )  &o(v), 

which together with (62) implies that B = Aa, a2 a,. 
The ultimate image singularity system of the six Kirchhoff potentials and the de- 
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formation potential within the ellipsoid (Miloh 1974) consists of a distribution of 
sources of strength 

3CtY,z, 5 C ~ w 3 ( a ~ - a ~ ) x l x ,  
x [ -+- ty-‘; a: - a: + (a; - a:) (a; + a:) (a: - a;) - hal a, a3] (69) 

and normal doublets (Miloh 1974) 

S ~ ~ , X Z _ ~ Q ~ Z X I ]  (70) 
a;+a; a;+ag 

over the ‘fundamental ellipse ’ given by 

x: +- = 1, x3 = 0. 4 
a;-ai ai-a: 

Since the image singularities system consists of only sources and normal doublets 
distributed continuously over part of the x3 = 0 plane, the hydrodynamic force [see 
(lo)] is given by 

where 9 denotes the ellipse given in (71) and 9’ the ellipsoid in (61). Substituting 
(68), (69), and (70) into (72) yields 

(73) 
1 d -Fi = - [KV+hKC;]  
P dt 

since the integral over Y in (72) vanishes because of symmetry. Since the three 
longitudinal added-mass coefficients Aii are related to the three coefficients Ci by the 
relations (Miloh 1973) 

(75) then reduces to 
Aii = - (V -I- 4nCj), 

P at 

(74) 

(75) 
1 a -Fi = - - (Ai iE) .  

By transforming the absolute time derivative in (75) into a time derivative relative 
to the moving co-ordinate system (6), we get 

For the case of a non-deformable (rigid) body, we have h = 0 and (76) reduces to 
the well-known expression given in Kochin, Kibel & Roze (1965, p. 401). For the case 
of a spherical body in the same motion we have A ,  = 47.- and (76) yields 

Next we calculate the hydrodynamic moment experienced by the ellipsoid. For 
the present case, there are no external boundaries or flow-producing mechanisms. 
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Therefore both q5, and v, vanish. Since the origin of the co-ordinate system coincides 
with the volume centroid, we have also re = 0. Equation (1  1)  then yields 

1 d 
P 
-Mi = -- dt (0, A3+i, ~ + j  + 4 1 1 ~  [N3+i V . r + 

+ 4nJF [M(r x V ) , + N -  a (r x V),] d g + J 9  ... +J9 (V x r)i V, . n d 9 ,  (78) 

8x3 

where M3+, and N3+, are, respectively, the source and doublet distributions associated 
with q53+i. Because of the symmetrical properties of the ellipsoid, the integrals over Y 
in (78) vanish and the above expression may be further reduced to 

(79) 
d a 
dt (wi A3+,, ,+J + 4n M (  r x V), + N - (r x V ) i  

1 - M i  = -- 
P 8x3 

In  a similar manner to (76), we obtain the following expression for the hydro- 
dynamic moment acting on the ellipsoid: 

Again the above expression reduces to that for a rigid surface (Kochin et al. 1965, 
p. 401) and, as expected, vanishes for a spherical surface. The eix added-mass coefficients 
of the ellipsoid are geometrical parameters and may be expressed in terms of tabulated 
elliptic integrals (Munk 1934, p. 301; Miloh 1973). 

6. Force on an expanding sphere in axisymmetric flow 
As a second exhmple, the force on a translating sphere with a time-dependent 

radius will be presented. The undisturbed flow field is assumed to be symmetric with 
respect to the 2 axis along which the sphere is translating with velocity V .  The 
undisturbed velocity potential (without the sphere) is expressed in terms of interior 

spherical harmonics as x A ,  RnP,(p), where (R, 6) are axisymmetrical spherical co- 

ordinates, p = COSO, P,&) denotes the Legendre polynomials and A ,  are given 
time-dependent coefficients. For convenience, the value of the undisturbed potential 
at the origin is taken to be zero. After introducing the sphere into the flow field, the 
velocity potential may be written as 

00 

n= 1 

OD m 

$(R,P) = Z BnR++l)Pn(p)+ 2: A,Rnpn(p)* (81) 

At a certain instant, let the sphere radius be a and let this spherical surface expand 
with velocity a (in the radial direction). For these boundary conditions, (81) yields 

n-0 n= 1 

n 
n + l  

B, = - a2n+lAn, n 2 1, 
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Following Hobson (1955, p. 133) we have 

which implies that the image of the exterior disturbance potential is given by an 
infinite series of multipoles in the x direction, lying at the origin. The strength of the 
nth-order multipole is given by 

1 
n !  

Pn = -- B,. 

The sphere will experience a force in the x direction which may be computed from 
the generalized Lagally expression ( 10) to yield 

which is to be evaluated at R = 0. Making use of the relation 

we get 
v 

m 
+ 4 7 ~  I; (n+l)B,A,+,  

P 

03 1 dV 3dA1 d 
- - E l  = -+-- + 3 
P Y  at 2 at n = l  

( V  + #Ax) + 3 I; m2"w2An As+l. 

For the case where the sphere is translating in an unbounded medium otherwise at 
rest, we have A ,  = - V and An = 0 for n p 1, and (88) is reduced to the previously 
derived expression (77) for the force acting on a deformable, non-rotating sphere. In 
a similar manner we obtain that the force on a stationary, deformable sphere in a 
uniform flow U(t) is given by 

A rather interesting result may be easily derived from (89). A stationary sphere in a 
uniform unsteady stream will experience no force when the stream velocity and the 
sphere radius vary with time such that the product Uas is constant. Similarly, when 
the sphere is moving with velocity V in an otherwise stationary medium, the hydro- 
dynamic force experienced by the sphere also vanishes when Vas is constant. 

This work was supported by the Office of Naval Research, under Contract N00014- 
76-C-00012. 
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